PMM U.S.S.R.,V0l.53,No.l,pp. 69-75,1989 0021-8928/89 $10.00+0.00
Printed in Great Britain © 1990 Pergamon Press plc

OPTIMAL ELASTIC DOMAINS OF MAXIMUM STIFFNESS

L.V. PETUKHOV

The problem of maximizing the stiffness (minimizing the work of the
external forces) of an elastic domain of given volume is examined.
Control is achieved by the shape of the domain /1-3/. A necessary
Legendre condition is obtained as a result of investigating the second
variation. The optimal solution can be found in the class of multicon-
nected elastic domains. The problem of increasing the connectedness is solved
by using the Weierstrass necessary condition for a strong maximum. A
dual problem is constructed to estimate the global maximum. An example
is presented of the domain of maximum stiffness.

1. Formulation of the problem. Concepts of a design domain, an allowable domain,
and a variation domain were introduced in /4/ and existence theorems were proved for the first
and second variations of the displacements of an elastic domain. Let the set of allowable
domains be denoted by f for which

mes Q = 0 << mes Q° (1.1)

where Q° is the design domain in terms of O*(A) (here 0<<A<C1 and s is an  integer
characterising the smoothness of the boundary I' of the domain £ /4/).

Let us formulate the optimum design problem. Suppose we are given the shear modulus W,
Poisson's ratio v, the design domain €° the coefficient O satisfying the inequality (1.1),
the external load factor F acting on the boundary T§° and the section of the boundary T,°
on which the displacements of the elastic domain equal zero. It is required to find

infJ(w, J={Fudl, vQcO'® (1.2)
Ty

where u = u;€; is the solution of the integral identity

(a@vydz— § Fmar =0, vwev (@ (1.3)
Q T'p

V@) =({v=uvix)e;|; WP (Q), v;(y) =0, y=T,}
X =g, A (0, V) = a;pe;; (n) ey (v)
€yt (V) = 1/2 (av,‘/t?.t, + avl/a.‘t,,)

e; are the unit vectors of the Cartesian coordinate system, *; are Cartesian coordinates,
Uy are displacements of the elastic domain, A4 (v,v) is twice the specific elastic strain
potential energy, and WM (RQ) is the space of Sobolev functions /5/. Here, and everywhere
henceforth summation is assumed to be between 1 and N, where N =2 or 3, over the repeated
subscripts i, /, %, 1, m,n in the products.

2. First and second variations. Let us form the expanded functional for which we
append the left-hand side of (1.3) to the right-hand side of (1.2) and we find the first
variation

87 =§ Adu,v)dz+ § Fiduyar + § Aque, v)brar. 2.1
a* T

Ty

where 8r and 8u are variations of the domain Q* and the displacement u*. It is assumed
here that the optimal solution is Q*& 0*(A), 0<<A <1, s>>4. We set v = —u*. We then
obtain the inequality
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8/ =—{ A@* u"érdr>0 2.2)
rt
from (1.3) and the necessary condition for a minimum 8J > 0, which is valig for any

allowable ©&r /4/ satisfying the condition

S Srdl =0 (2.3)

‘[“’
The following obvious theorem is obtained from inequlity (2.2) and Eqg.{2.3).

Theorem 1. Let Q*=0°{d} where s>4, 0<<A<<{ and the vector function u¥, which is
a solution of the integral identity (1.3) for £* give a minimum to the functional J. Then a
>0 is found such that

A ¥ (y), u* (y)=§ ye I*\I”° (2.4)
AQ*(y), v () >E yeT™* NI T ULY
We now obtain the second variation of the functional (1.2). Taking into account that
v = —u*, we obtain
3 94 (u*, u*
627 = — { [24 ¥, oy or 4 ZALEYD gor 4. (2.5)

o
A (u*, u¥) [82r — I (1) aﬂ}} dr

where &% is the second variation of the domain % J;{t) is the first invariant of the
curvature tensor t of the boundary I'* and 1, is a coordinate orthogonal to I'* /4/.

We shall examine the variations ©&r and 8% on the sections I*\ I° of the boundary.
In this case

A {(u*y, u¥*) = { by virtue of Theorem 1, while
§ (8 — I, (t)8r?)dT =0 @7
l“i

by virtue of the constraint (1.1). It follows from (2.5)~(2,7}) that

— {[2a ouyor 4 24D 52l ar >0 (2:8)

T*

Transforming the first component in the integrand of (2.8), we find

I 8o (u*)
A (u*, u) br = V. (o (u*)-Subr) + vy —5— -Sudr + (2.9)

¥, 0 u*)- ZS? 6r — V.o (u*)-budr — Vor.g (u*)-6u

where ¥, is the direction of the external normal to I*, V =V + 1d/dt; is the Hamilton
operator, and 0;; (u*) = a;;,&y (U*) are stress tensor components. We note that the third
component equals zero since Fy+@ (u*) =0 by virtue of the boundary conditions on the optimal
domain boundary. Substituting the right-hand side of (2.9) into (2.8) and integrating the
first component, we obtain

S [27 (o (u) 8r)-6u — 24U g2 ar >0 (2-10)
r'

_ The first component in the integrand of (2.10) is a quadratic form dependent on & and
V8r, since Ou is determined by the integral identity, the force load in which is V.[o (u*)
81 /4/. Using it we obtain

§ V-[o(u*)dr]-6udl = § 4 (6u, Su)dz >0
T+ [

from which it follows that the Legendre necessary condition for the stiffness maximization
problem is always satisfied.
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3. The Weierstrass necessary condition. To obtain the Weierstrass necessary
condition at the point X, Q* = 0'(A), 0 <A <1, we select an %, >0, such that the sphere
T (xp M) Q% (U {xg, M) = (XX — x| <" Mp})-  Let us examine the simply-connected domain £,
that is a star relative to Xg, where, ,C U(xy n,). We take any vector Y& T, (I, is the
boundary of ;) and we draw the vector r{y} from the point X, in it. If the set of points
nr (y) is considered then the boundary T,(n) is obtained that separates the domain £, (w),

where Qg = Qg (1), [y =Ty (1), Qo M) C U (%4, Mo)» 0 << 1 << M. The domain R, (n) can be obtained
from R, if all its linear dimensions change MN-fold, consequently

mes 2, (n) = 4" mes Q, 3.1

We now construct a family of domains Q{n) = O°(A). To do this we "cut out" a cavity
Q. m), 0<<n<np in €% and in a certain (N — {)-dimensional sector of the boundary T*\

I'°® we give the generating boundary function 7r{y,n)>»0 /4/. It follows from the construc-
tion of Q(n) that

dr(y) = ..=08"1r(y) =0, ¥r(y) >0 (3.2)
§ 6¥r dT = mes QN1 (3.3)
&

We continue u* into the domain @ {M)\0* so that u* and all the first derivatives of
u are continuous when going from R* into Q(n) in the (N — 1)-dimensional sector in
which r(y,m) >0 and we represent the expanded functional (J(u} plus the left-hand side of
the integral identity (1.3)) in the form

*

J= S Afu, u¥)dz— S A(u, u*) dz —
Uz NG Qe \T(Xyr M)
§ a@umde+ § Fi+umdr
QmNA* Tp

In the domain U {%g, M)\ Qo (n) w* is an infinitely differentiable function /6/, conse-
quently, applying the formula

A, u*) =V -(gu*)-u) — [V-o(u¥)]-u

in the first integral and using the Gauss's Theorem, we obtain

J=J,+Jy 0.4
Ji= — S ry-o(u¥)-udl
o
IL=— { A@utdet+ § Furdr 3-5)
an\gim TF

Let us find the variation J,. Since the conditions (3.2) are satisfied for r(y,n), we

have
8T o= =8N, =0, 8NJ,= — S;A(u*, u*) 857 dT (3.6)
T
from which it indeed follows from (2.4) and (3.3) that
O0¥J, = — IN!mesQ, (3.7
Theorem 2. Let the conditions of the theorem be satisfied and 8Jy = ... =8V, =0,
Then the Weierstrass condition
§¥J, > [Nl mes Q,, Vxe Q¥ (3.8)

should be satisfied.

Proof. The domain $* and w* give a minimum to the functional J from which, together
with the conditions of the theorem and (3.6), it follows that 8J = ., =68¥1J =0, &VJ>0.
Taking (3.4) and (3.7) into account, we obtain (3.8). ‘

4., The Weierstrass necessary condition for an elliptical hole. (¥ =2). It is
not possible to determine the left-hand side of the Weierstrass condition (3.8) for arbitrary
holes Qo. However, in the two-dimensional case the solution u can be determined for certain
hole shapes, elliptical, hypotrochcidal, and certain others, as n-»0 and the inequality
(3.8) can be expressed in terms of the stresses.

Let @ be an elliptical hole with major and minor semi-axes @ =11+ §),b=n{1—8),0
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E <1, whose centre is placed at the point %o (without loss of generality we can set X, = 0).
We will consider that the principal stress o; = o, (u* (0)) of the tensor = o (8* (0)) acts
at an angle P to the ellipse semimajor axis. The solution u{x,7n) on the right-hand side of
(3.5) is represented in the form of the sum u = u* (x) + ¥ (x, ), where u is the solution of
the integral identity

§ A@vide+ § rpo@)var=0, vvev@m) (4.1)
) Tu(n)

(Here ¥y is the direction of the normal to T,{m) that is external with respect to Q(n)).
It is known thatas 1 —0 the solution u in the neighbourhood of T’y (W) is identical, to the
accuracy M, with u®(X, M) — the sclution for an infinite plane with an elliptical hole on
whose boundary the load ~— r;-¢(u*) acts. This solution can be found by the Kolosov~
Muskhelishvili formulas /7/. Since it is necessary to evaluate (3.5), we then present y°

on the boundary of the ellipse under consideration

u” + iy == (4p) oA (B) + G A (—B)] 4.2)
A (B) = ue® (3B — L) 4 o0 (1 — Ec¥B)
Here O is the angle measured from the &; axis while % = 3—4v for a plane state of

strain and % = (3—v){(1 + %) for a plane state of stress. Substituting u*, (4.2), nh =
— [(1 — &) cos Oe; + (1 - E) sin BexJ/R  and dI' = nyRd® into the right-hand side of (3.5), where

R =94 —2Ecos20 + E¥ we obtain, apart from components proportional to %, after reduction

S (1 — B A (u*, u¥) + an® (Gp) 7y (B, §) {4.3)
Y (B, B) = (1 + E%)oy + 02)* + (% + E(0;, — 03)® —
28 (1 + %)(0,* — 0, cos 2P

For the ellipse mesQ, = n {1 —&%. substituting this expression and (4.3) into (3.8), we
obtain the Weierstrass necessary condition for an ellipse

Y. HUpE - > — 4 @t e (4.4)
It should be satisfied for any allowable values f, § consequently, the problem
miny B, O lp (1 — L 0B, 0CE (4.5)

should be sclved.
To be specific we set 6, > 0,2, Then the solution of problem (4.5) is obtained for
{0y + 0 (0 — 0, — 10600
(01— 05) (0 + 0" 0L o077 !
V(o Bo) { — 4x0,0,,  — 1< o077 <0
— k.2 - -
(=L 40,6,, 0L oot <1

ﬁ0=07 §o=‘{

and the Weierstrass necessary condition takes the form

A (u*, u*) — %0,0p7 > §, 1 < 050,72 L O (4.6)
A (u*, u*) + 010007 > §, 0 < o0yt
u* = u* (xy), 0p = oy (U* (x,))

5. Welerstrass necessary condition for an ellipsoidal cavity (¥ =3). Let
€, be anellipsoidal cavitywith semi-axes 1a; >>na, > 14, whose centre is placed at the
point X, (%X, 1is set equal to 0). The solution wu (x, 1) on the right-hand side of (3.5) is
represented in the form of the sum u = u* (x) + U (x, 1), where @ is the solution of the integral

identity (4.1). Exactly as in Sect.4, we find u’(x,m) - the solution of the problem of the
three-dimensional space with an ellipsoidal cavity on whose surface the load — 10 (u*} acts.
This solution is known /8/. We present it at points of the boundary I

w'’ = Wiz QW7 Wy =22, By (5.1)

2__ g 2 __
W{j=[4(1—v)ﬂ))+2%wi—2 ;_.gj (l)j]B”, (L:#])
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Zy=(1—2v) mi, Ziy == (1 — 2v)@; + (2pA)?

— ex) {p* — E) (0% — 1) (P2 —cp)?
§)(‘-‘a~§1) T Ta—§, @+ Cn—gi @5
E=0, Ey=¢% E=1, “k=V.P’_§k

A=AE =V =N =1, ca=U+SLVIFee+eys

Zi8 == (1 2'\7) (Cl —

dx ¢ P
‘°k=§m' “’3+4—§ Wi 1752

The constants B are determined by the relationships

Biy=0,;(2D;)Y, i, By = — Qu0O/2

Dyy = (1 — ) [(pA)™* — @; — o] — [(p* — &) ©; —
P* —Eogl & —E)?

where @y are elements of the matrix P, and the elements of the matrix P are determined
by the equalities
Py =(1—2v)[og— (pA)7], Po=(1—2v)0q(p* — &) +
3
VO, 1 /12y N1
=t (7=~ 7w
Poo={i—2v — g} (p* “*%S) (er— ) (p* — &)
= )(CL—E o) (s~ Eg) ®g+v o —8) e —Ep) @ —
(I—9)a—c) (P ~8)  (pt—c)
G—T)—EJph ~ Ta—§, @ c—Eg
A=A(p)’ q=17213
Substituting (5.1) and u* into the right-hand side of (3.5), we obtain

I = 4’;“3 @10,a, I:A (u*, u*) + % xp] (5.3

3
Y= ZyQeOii0y -+ D Opg ({1 — V) (DpgplA)t — 1]
Pa=1, g

For an ellipsoid mes Q, = 4na,a,a4/3. Substituting this expression and (5.2) into (3.8),
we obtain the Weierstrass necessary condition for an ellipsoid

PEWT>{— A4 (u*, u") (5.3)

Inequality (5.3) should be satisfied for any allowable p, ¢ and for any ellipsoid
location relative to the principal axes of the tensor o (u* (X,)). Let ¥ denote the matrix
of the direction cosines between the principal axes of the tensor o (u* (x,)) and the directions
e of the Cartesian coordinate system (y;; is the cosine of the angle between the direction
e; and the direction g;(u* (X,))). We introduce the angle of precession §;, the nutation B;,
and the pure rotation f; (the Euler angles), we express 7; in terms of P, (see /9/), we
represent the components of the tensor o (u* (X))} in the form 0;; = OxYu¥;x and we substitute
them into the left-hand side of (5.3). Then the function % will depend on the parameters
p, ¢ of the ellipsoid and the angles f;, B, Ps that is

Y (p, €, Brs B2y Bs) 2) > L — A4 (u* (xo), u* (X)) (5-4)
Inequality (5.4) should be satisfied for any allowable p, e, Bi, and consequently it is
necessary to solve the problem
$* =miny(p, ¢, f;, Ba By)y I<p<® (5.5)
et 0P
Since an explicit expression for Y with respect to the arguments is not obtained success-
fully, problem {5.5) can only be solved numerically. To be specific, we set 0,®2> g%, 0.’ > o,

and use the notation «; == 0,/0,, Gy = 04/0,. The relationship ¥*/o is presented in Fig.l
for different values of «, and a, for v =103.

6. Dual estimate. To obtain the dual estimate we consider the bilinear form

M@, v)= §[A (u,u) + A (v, v)]dz _15 Fw;dl (6.1)
F
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YO0 R), Yu, ve V{Q
The functional
M (uy=supM(u, v), Vve V()

obviously equals the work of the external forces and takes finite values for u that satisfy the
integral identity (1.3).

-1 2 s =
——
05
N
g I 5
0.5 ]
Fig.l Fig.2

We now construct the functional
My(v)y=inf M (u, v}, VQ& 0, Ve,; (w) = L, (Q)

Since the integrand in the first integral on the right-hand side of (6.1) is a strongly
convex function of g;(u), the necessary and sufficient condition inf M (u, v), Ve; (u) e L, (Q)

is the equality ef{u) = —e (v)/2, from which u= —v/2, Vx&E Q follows while
in M(u,v)u—-—-z—SA(v,v)dx——SFividI‘
;5 (Wel(2) & T

We introduce the constant { for each fixed vezV (Q°) such that

Q= fx= @A, v)> 1), mesQ, =0

(6.2)
P\ Q=X 4,
Now it is easy to find the functional
M, (V)'-"—'i—g A, v)d:c—-—SFivi ar, Vve v (@) (6.3)
Q, Ty
for the domain Q, that satisfies conditions (6.2). Let us formulate the dual problem
sup My (v), Vves V(Q9)
and present the inequalities

sup® My (v) =sup®inf° M (u, v)<{sup®inf M (u, v) (6.4)

sup inf M (u, v} <infsup M (u, v) = inf M° {u)

Here sup® denotes the operation sup for all v& V(Q°), inf° is the operation inf for

all Qe0, gy (u) = L,{R), the cperations sup and inf are performed, respectively, for all
ve Vi{Q)and Q= 0° (M), s = V {Q); Ois the set of measurable sets QCQ° for which mesQ = 6.

Theorem 3. Let there exist the domain Q*= 0° (M), 0 <A <1 and W* =V (Q%), which is
a solution of the integral identity (1.3) whose continuation on Q° satisfies the condition

A(u*, ut) >, Vxe Q% 4@*, u*) {6.5)
Vxe QN Q*
Then §%, u* are the optimal solution fo problem (1.2).

Proof. We set v = —2u, Since condition (6.5) is satisfied for Q% then we can set
Q, = Q* 1t then follows from (6.3) that

My(—2u%) = —§ A@* ude+ 2§ Furdl
Qw T
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But u* satisfies the integral identity (1.3), so consequently

My(—2u%) = { Fu*dl
Tp

from which, and inequality (6.4}, it follows that the dual estimate and the value of the
functional in problem (1.2) are identical. Therefore, £* u* are the solution of problem
(1.2).

Example. Let Q° be a square with sides 2d on two edges of which a uniformly distributed
load F = Fe, acts. We will assume that a plane state of strain is realized.

As initial domain we take a square out of which a circle of radius g has been cut such
that 4d® — ng? = ¢, where 6 is a given number. Starting from this initial approximation, using
the necessary condition (2.4) as well as the scheme of partition into finite elements /2/, we
obtain a domain of large stiffness.

A quadrant of the domain obtained as a result of optimization for F=1 N/m2, d=1m,
p=77x 10¥ N/m2, v=203,0=287, and g =06, is represented by the heavy one in Fig.Z2.

The initial domain is represented by the dashed line. The work of the external forces equals
Jo~ 0835 x 10-® N and Jy=0445Xx {0-18 N, respectively, for the initial and the improved domains,
while the gain in stiffness is & =1 — J;/J/y =~ 0.299.

We now obtain the dual estimate for w = —avz, vy =a(l — vz,  Substituting these functions

into (6.3) and maximizing the value of M; in «, we obtain

Jx = max M, (v) = 8d4F2 (4 —v) (pO)~2
[+

For the data used in the problem J,=»0.25¢x 107¢ N, therefore, the greatest possible
gain equals 8, =1 — J,/J, ~0.8.

A further increase in the domain stiffness can be achieved because of an increase in its
connectedness., Analysis shows that the Weierstrass condition (4.5) is not satisfied at almost
all points of the domain,
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