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OPTIMAL ELASTIC DOMAINS OF MAXIMUM STIFFNESS* 

L.V. PETUKHOV 

The problem of maximizing the stiffness (minimizing the work of the 
external forces) of an elastic domain of given volume is examined. 
Control is achieved by the shape of the domain /l-3/. A necessary 
Legendre condition is obtained as a result of investigating the second 
variation. The optimal solution can be found in the class of multicon- 
netted elasticdomains.Theproblemofincreasingtheconnectednessis solved 
by using the Weierstrass necessary condition for a strong maximum. A 
dual problem is constructed to estimate the global maximum. An example 
is presented of the domain of maximum stiffness. 

1. Formulation of the problem. Concepts of a design domain, an allowable domain, 
and a variation domain were introduced in /4/ and existence theorems were proved for the first 
and second variations of the displacements of an elastic domain. Let the set of allowable 
domains be denoted by 8 for which 

mesQ = 8<mesQ" (1.1) 

where 51" is the design domain in terms of 0'(h) (here O<h< 1 and s is an integer 
characterising the smoothness of the boundary F of the domain Q /4/). 

Let us formulate the optimum design problem. Suppose we are given the shear modulus IL, 
Poisson's ratio Y, the design domain a", the coefficient 8 satisfying the inequality (1.11, 
the external load factor Fatting on the boundary FPOl and the section of the boundary Flro 
on which the displacements of the elastic domain equal zero. It is required to find 

inf I(u), J= s F&dr, VQEO"(h) 
r, 

where u = ulei is the solution of the integral identity 

S A(u,v)dx- 
a 

S F,v<dr=O, Vv~V(51) 
rF 

V (Q) = {V = Vi (X) ei 1 vi E WP’ (Q), vi (y) = 0, y E r,} 
X = wit A b, V) = %JkleiJ (u) ekl (V) 

ekl (V) = '/z (&$@zJ + &&bk) 

(1.3) 

e, are the unit vectors of the Cartesian coordinate system, Xi are Cartesian coordinates, 
Ut are displacements of the elastic domain, A (v,V) is twice the specific elastic strain 
potential energy, and W,(l) (52) is the space of Sobolev functions /5/. Here, and everywhere 
henceforth summation is assumed to be between 1 and N, where N=2 or 3, over the repeated 
subscripts i,i, k, 1. m, n in the products. 

2. First and second variations. Let us form the expanded functional for which we 
append the left-hand side of (1.3) to the right-hand side of (1.2) and we find the first 
variation 

6J = S A (h, V) a~ + S F&ar + S A (u+., v) &r dr. (2.1) 
P’ % r* 

where 8r and 8u are variations of the domain B* and the-displacement u*. It is assumed 
here that the optimal solution is B* =0'(h), 0< A< 1, s>4. We set v = -u*.. We then 
obtain the inequality 
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from (1.3) and the necessary condition for a minimum 6120, which is valid for any 
allowable 6r /4/ satisfying the condition 

6J = - S A (u*, u*) Sr dI' .> 0 
f’ 

(2.2) 

s 6rdr=O (2.3) 
T' 

The following obvious theorem is obtained from inequlity (2.2) and Eq.(2.3). 

Theorem 1 f Let Q* E@(h) where $24, O<h<l and the vector function u*, which is 
a solution of the integral identity (1.3) for 8*give a minimum to the functional J. Then a 

C>O is found such that 

A (e* (Y)> u* (Y)) = 5, y E r*\r' (2.4) 

A (u* (Y), U* (Y)) > 5, YE (r* n r") (rpo u r/) 

We mw obtain the second variation of the functional (1.2). Taking into account that 
-y = -_u*, we obtain 

&J = - $ {2A (u*, 6u) 6r + “‘it; ‘*) 6% + (2.5) 

A (u*, u*) fs2r - I, (t) W]} dI’ 

where 62r is the second variation of the domain a*, II(t) is the first invariant of the 
curvature tensor t of the boundary I? and ?, is a coordinate orthogonal to r* /4/. 

We shall examine the variations 6r and 6Zr on the sections I'*\r" of the boundary. 
In this case 

SJ = 0, 6=J > 0 (2.6) 

A (u*. IN*)= 5 by virtue of Theorem I, while 

1 [& - z, (t) W] dr = 0 (2.7) 
r* 

by virtue of the constraint (1.1). It follows from (2.5)-(2.7) that 

- 
S[ 

2A (u*,~u)&r + "(;;;"*) &+I?> 0 m(2.8) 

r* 

Transforming the first component in the integrand of (2.81, we find 

A (u*, Su) 6r = V a (a (u*) . &dir) + ct. + 9 - 6u6r + (2.9) 
r,.a(“*p leJ” -~6r-VP.cr(u*).6usr--~r.o(u*).6u 

where rl is the direction of the external normal to I?*, V = V -k r,fl/&, is the Hamilton 
operator, and 'Jij (U*) = %lklekZ (U*) are stress tensor components. We note that the third 
component equals zero since r**u (II') = 0 by virtue of the boundary conditions on the optimal 
domain boundary. Substituting the right-hand side of (2.9) into (2.8) and integrating the 
first component, we obtain 

SC 
ZV.(u(u*)&).hu- ar, ] ~A(u** u*) hrs dr20 (2.lO) 

P 

The first component in the integrand of (2.10) is a quadratic form dependent on 6r and 
V6r, since 6u is determined by the integral identity, the force load in which is V*ro (u*) 
6rl /4/. Using it we obtain 

f ~.~u(u*)~r~.~u~r = 1 A@u,&1)&>0 
r* R’ 

from which it follows that the Legendre necessary condition for the stiffness maximization 
problem is always satisfied. 
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3. The Weierstrass necessary condition. To obtain the Weierstrass necessary 
condition at the point xoEQ* E@(h), O<h< 1, we select an no>O, such that the sphere 

B (x0, stl) C Q", (U(xo, no) = {xllx - %I I c %I)). Let us examine the simply-connected domain 52, 
that is a star relative to x0, where, H, C u (x0, llo). We take any vector YE ro(l?o is the 
boundary of aof and we draw the vector r(Y) from the point x0 in it. If 

rlr (Y) is considered then the boundary ro (rl) is obtained that separates 
where 52, = no (I), To = To (I), 4 (q)c U(x,, qo), 0 < q< qo. The domain Qo (11) 
from Q2, if all its linear dimensions change q-fold, consequently 

mesQ,(q) = qN mesa0 

the set of points 
the domain Q,(q), 
can be obtained 

(3.1) 

We now construct a family of domains n(?l)E o'(h). To do this we "cut outm a cavity 
co(q), O<q<q,,, in 61* and in a certain (IV- l)-dimensional sector of the boundary I?*\ 

I?” we give the generating boundary function 7. (Y, rl) > 0 /4/. It follows from the construc- 
tion of Q (11) *at 

Sr (y) = . . . = ijN-ir (y) = 0, SNr (y) > 0 (3.2) 

s ~Nrdr=mes~o~! (3.3) 
P' 

We continue u* into the domain Q (V)\G$ so that u* and all the first derivatives of 
u* are continuous when going from cz* into B (11) in the (N- 1) -dimensional sector in 
which i+(Y, q)> 0 and we represent the expanded functional (J(u) plus the left-hand side of 
the integral identity (1.3)) in the form 

I= s_ A(u,U*)dx- P 2 
A(u,u*)dx- 

U(X** rl)\%Cq) e"\U(x.S rl.) 

5 d(u,u*)dx + 1 Fi(ui -+ ~i*)dr 
SX,M* fF 

In the domain ~(xo,~o)\~o(?-l) m* is an infinitely differentiable function /6/, conse- 
quently, applying the formula 

d(u,u*)~V.(~(u*).u)-IV.~(u*)~.u 

in the first integral and using the Gauss's Theorem, we obtain 

Let us find the 
have 

from which it indeed 

Theorem 2. Let 
Then the Weierstrass 

should be satisfied. 

J = J, + Jz 

J,=- S r,.o(u*)-udI? 
r*(Q) 

(3.4) 

I,= - s d(u,u*)dx+ 5 F,u,*dI' (3.5) 

n*\Rl, I-F 

variation Jz. Since the conditions (3.2) are satisfied for r (Y, 3 I we 

6&T,=... =GN-V,=O, 6NJ,= - 5 d(u*,u*)P+dI' (3.9 
f* 

follows from (2.4) and (3.3) that 

6NJz = - <NImesQo (3.7) 

the conditions of the theorem be satisfied and SJ, = 1.. = 6N-‘J, = 0. 
condition 

6NJ,> CNt mesQ,, VXCEQ* (3.8) 

Proof, The domain Q* and S* give a minimum to the functional J from which, together 
with the conditions of the theorem and (3.6), it follows that 8J = ,., = W-lJ =o, WJ > 0. 
Taking (3.4) and (3.7) into account, we obtain (3.9). 

4. The Weierstrass necessary condition for an elliptical hole. (X=2). ?tt is 
not possible to determine the left-hand side of the Weierstrass condition (3.8) for arbitrary 
holes Bo. However, in the two-dimensional case the solution u can be determined for certain 
hole shapes, elliptical, hypotrochoidal, and certain others, as q-+0 and the inequality 
(3.8) can be expressed in terms of the stresses. 

Let a0 be an elliptical hole with major and minor semi-axes 0 =q(i + E), b = q(1 -E), O< 
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% < 1, whose centre is placed at the point xo (without loss of generality we can set X0 = 0). 
We will consider that the principal stress or = or (u* (0)) of the tensor o = u (u* (0)) acts 
at an angle @ to the ellipse semimajor axis. The solution u(x,q) on t&e right-hand side of 
(3.5) is represented in the form of the sum II =~*(x)f~(x,~), where II is the solution of 
the integral identity 

(Here PI is the direction of the normal to I',(T)) that is external with respect to D(T))). 
It is known thatas q +O the solution ii in the neighbourhood of rO($is identical, to the 
accuracy '1, with u'(x, rl) -the solution for an infinite plane with an elliptical hole on 
whose boundary the load - rr.u (u*) acts. This solution can be found by the Kolosov- 
Muskhelishvili formulas /7/. Since it is necessary to evaluate (3.5), we then present ~0 
on the boundary of the ellipse under consideration 

u; + iUs =Ij. q (4~)~%~A (B) -t u,n f-p)1 

A (6) = xeie (e*@ - E) + &e (1 - &9) 
(4.2) 

Here 0 is the angle measured from the x1 axis while x = 3-4v for a plane state of 
strain and x = (3-v)(l + Y)_' for a plane state of stress. Substituting u*, (4.2), rl = 
- [(I - %) cos Be, + (1 + %) sin @e&R and dr - qRd0 into the right-hand side of (3.5), where 

R=y'l - 2Ecos28 + %2 we obtain, apart from components proportional to qzC after reduction 

J, ^- nrl* (1 - %“I d W, ~“1 + wa (4N1q ff?, %) 

Jr (B7 E) = (1 + %W(UI + u# -F (x + %W, - uz)" - 
2% (1 + x)&a - az*) cos2~ 

(4.3) 

For the ellipse mes6& =x(1-%'). Substituting this expression and (4.3) into (3.81, we 
obtain the Weierstrass necessary condition for an ellipse 

9 (B, 5) IQ (1 - %V-'> % - A (U*, n") (4.4) 

It should be satisfied for any allowable values fi, % consequently, the problem 

min 11, (B, E) 14~ (1 - EYI-', 0 < fi Q n, 0 Q E Q 1 (4.5) 
should be solved. 

To be specific we set al"> (I~'. Then the solution of problem (4.5) is obtained for 

and the Weierstrass necessary condition takes the form 

A (u*, u*) - xu,u,p-’ ) 5, -1 .< u2u1-’ < 0 

A (u*, u*) -t” ‘3pp > 5, 0 g uzu1-l < 1 
u* = u* (x,), cfa = 0, (IP (x0)) 

(4.6) 

5, Weierstrass necessary condition for an ellipsoidal cavity (X=3). Let 
& be anellipsoidalcavitywith semi-axes ?a, >qas> qa, whose centre is placed at the 

point x0 (x0 is set equal to 0). The solution u(x,n) on the right-hand side of (3.5) is 
represented in the form of the sum u = u* (x)i- ii(x,l), where ii is the solution of the integral 
identity (4.1). Exactly as in Sect.4, we find no (xtrl) - the solution oftheproblem of the 

three-dimensional space with an ellipsoidal cavity on whose surface the load - rl*U (U+) acts. 

This solution is known /S/. We present it at points of the boundary r, 

UIO = w,,s, (2&-r, WII = ZZ*,B,i, (5.i) 

w,= C P’--Ei pa-g, 
4(i--h+2 ei_E, ~~-2 Ei_e, 0, 1 Bji, @'iti) 
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Zi, = (1 - ZY)O~, Zi, = (1- 2~) CO* + (SPA)-1 
(~1-4W--&,i) 

h=(* -2V) (cI-~i)(c~-.~) wi_~w,+~m~ 

& = 0, &, = es, Es= 1, @k = V’p’--fe 

A-A(p)= I/(@?--eea)(pP--1), cl,% = (1 f da -t_ 1/j + e* f e*)/3 

The constants Bit are determined by the relationships 

B,j = Ui, (204-1, i f j, B,i = - QikUtk/Z 

Di, = (1 - v)[ (PA)-"-- oi -o,]- [(p*- &)wi- 

(P* - W%l(& - U-2 

where Q+t are elements of the matrix p-1, and the elements of the matrix P are determined 

by the equalities 
P q1 = (1 - 2~) [aq - (PA)-‘], Ppl = (I- Iv) cog (~2 - Q-I+ 

* 

A=A(p), p=l,2,3 

Substituting (5.1) and u* into the right-hand side of (3.5), we obtain 

(5.2) 

For an ellipsoid mess&, =4na1u2a,/3, Substituting this expression and (5.2) into (3.81, 
we obtain the Weierstrass necessary condition for an ellipsoid 

* (2W a 5 - A w, u+) (5.3) 

Inequality (5.3) should be satisfied for any allowable p, e aa for any ellipsoid 
location relative to the principal axes of the tensor u(u*(x~)). Let y denote the matrix 
of the direction cosines between the principal axes of the tensor o(u* (x2)) and the directions 

et of the Cartesian coordinate system (y,, is the cosine of the angle between the direction 
et and the direction aj (u* (x2))). We introduce the angle of precession @r, the nutation fi2, 
and the pure rotation @2 (the Euler angles), we express ytl in terms of et (see /9/j, we 
represent the components of the tensor o(u* (x,,)) in the form %i = @k%kYlk and we substitute 
them into the left-hand side of (5.3). Then the function $ will depend on the parameters 
p, e of the ellipsoid and the angles fk &, B2 that is 

9 (~9 e, fin fi21 02) (&)-'> 5 - A (u* (xi,), u* (xc4 (5.4) 

Inequality (5.4) should be satisfied for any allowable p, e, &, and consequently it is 
necessary to solve the problem 

(5.5) 

Since an explicit expression for 9 with respect to the arguments is not obtained success- 
fully, problem (5.5) can only be solved numerically. To be specific, we set or*> af,a,*> a22 
and use the notation a2 = o,Ja,, a2 = a$ol. The relationship **is22 is presented in Fig.1 
for different values of a, and a.2 for v =0.3. 

6. Dual estimate. To obtain the dual estimate we consider the bilinear form 

M (u, v) = [A (u, u) + A (u, v)] dx - j F,vi dr 05.11 
rF 
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The functional 

M" (u) = sup Mfu, v), Vv E Y(Q) 

obviously equals the work oftheexternal forces and takes finite values for u that satisfy the 
integral identity (L.3). 

Fig.1 Fig.2 

We now construct the functional 

161, (v) = infM (u, v), VQ E 0, VEij (U)E L, (Q) 

Since the integrand in the first integral on the right-hand side of (6.1) is a strongly 
convex function of &if (41 the necessary and sufficient condition inf M(u, v), VEIL (U)E L, (9) 
is the equality E(U)= --E(v)/~, from which u= -v/2, VXE Q follows while 

inf 
eij CUE LW 

l(u,v)--$j A(v,v)&c-- i FividlY 
P FF 

We introduce the constant g for each fixed v~V(W) such that 

s?, = {X E fl” 1 A(v, v) 9 g), mes 8, = 8 

Q” \ 8” = {x E 8” I A (v, v) < s> 

Now it is easy to find the functional 

M,(“)=+j A( ~9 V)dX - ’ FiUi dI?, VV E V (9”) s 
“0 FF 

(6.2) 

(6.3) 

for the domain Q, that satisfies conditions (6.2). Let us formulate the dual problem 

sup M,(V), Vv E V(F) 

and present the inequalities 

s~p"Ma(v) = sup"inf" M(u, v)< sup0 inf M(u, v)< 
sup infM (u, v)< inf sup M(u, v) = inf M"(u) 

(6.4) 

Here sup' denotes the operation sup for all VE v(o’), inP is the operation inf for 

all 8~ 0, eir(m)~Lz(Q), the operations sup and inf are performed, respectively, for all 
v E V(8) and QE@@), us V(Q);0 is the set of measurable sets QCP, for which mesa = 8. 

Theorem 3. Let there exist the domain Q*E 0" (h),O<?~<i and U* E V(Q*), which is 
a solution of the integral identity (1.3) whose continuation on Q" satisfies the condition 

A (u*. u*) > 5, vx E Q2*, A&*, u*)< 5, (6.5) 
vxEW\\* 

Then Q*, U* are the optimal solution fo problem (1.2). 

Proof. We set v =-2u. Since condition (6.5) is satisfied for Q*rthen we can set 
5;1, =a*. It then follows from (6.3) that 

M* (- 2U*) = - S A (U*, U*) dX + 2 1 FiUi* UT 
61” rF 



75 

But 11* satisfies the integral identity (1.3), so consequently 

H, (- 2u*) = f Fiui* dr 

rF 

from which, and inequality (6.41, it follows that the dual estimate and the value of the 
functional in problem (1.2) are identical. Therefore, w*, u* are the solution of problem 

(1.2). 

Example. Let ~20 be a square with sides 2d on two edges of which a uniformlydistributed 
load F = Fe, acts. We will assume that a plane state of strain is realized. 

As initial domain we take a square out of which a circle of radius 9 has been cut such 
that 4@-sg2=8, where 0 is a given number. Starting from this initial approximation, using 
the necessary condition (2.4) as well as the scheme of partition into finite elements /2/, we 
obtain a domain of large stiffness. 

A quadrant of the domain obtained as a result of optimization for F= 1 N/m2, d=1m, 
p = 7.7 x 10'0 N/m2, Y = 0._3, fl = 2.87, and g = 0.6 I is represented by the heavy one in Fig.2. 
The initial domain is represented by the dashed line. The work of the external forces equals 
f, ~0.635 x 10-'0 N and Jll: 0.445 x 10" N; respectively, for the initial and the improveddomains, 
while the gain in stiffness is 6, = 1 - J,iJ,*=O.299. 

We now obtain the dual estimate for ~l=-e%, ~~=a(l-v)+. Substituting these functions 
into (6.3) and maximizing the value of M, in a, we obtain 

J* = max df,(u)= 8dVz(i - Y) (p(3)-' 
a 

For the data used in the problem J,szO.254x 10-YN~t therefore, the greatest possible 
gain equals 6, = % - J,iJ, -0.6. 

A further increase in the domain stiffness can be achieved because of an increase in its 
connectedness. Analysis shows that the Weierstrass condition (4.5) is not satisfiedatalmost 
all points of the domain. 
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